Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations

Identifieur interne : 001219 ( Main/Repository ); précédent : 001218; suivant : 001220

A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations

Auteurs : RBID : Pascal:13-0133841

Descripteurs français

English descriptors

Abstract

The effect of nanocrystalline Ti02 doping with transition metal cations (Cu2+, Fe3+, Co2+, Cr3+) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO2 samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: A < A/Co < A/Cu < A/Fe. On the contrary, photocatalytic activity of rutile samples decreases upon doping in the series R > R/Co > R/Cu > R/Fe > R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0133841

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO
<sub>2</sub>
doped with transition metal cations</title>
<author>
<name sortKey="Kernazhitsky, L" uniqKey="Kernazhitsky L">L. Kernazhitsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Photoactiviry, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46</s1>
<s2>Kiev 03650</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Kiev 03650</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shymanovska, V" uniqKey="Shymanovska V">V. Shymanovska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Photoactiviry, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46</s1>
<s2>Kiev 03650</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Kiev 03650</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gavrilko, T" uniqKey="Gavrilko T">T. Gavrilko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Photoactiviry, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46</s1>
<s2>Kiev 03650</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Kiev 03650</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naumov, V" uniqKey="Naumov V">V. Naumov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Photoactiviry, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46</s1>
<s2>Kiev 03650</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Kiev 03650</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kshnyakin, V" uniqKey="Kshnyakin V">V. Kshnyakin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Sumy State University, Rymsky-Korsakov Str. 2</s1>
<s2>Sumy 40007</s2>
<s3>UKR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Sumy 40007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khalyavka, T" uniqKey="Khalyavka T">T. Khalyavka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory of Photochemistry of Disperse Materials, Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, Gen. Naumov Str. 13</s1>
<s2>Kiev 03164</s2>
<s3>UKR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Kiev 03164</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0133841</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0133841 INIST</idno>
<idno type="RBID">Pascal:13-0133841</idno>
<idno type="wicri:Area/Main/Corpus">001026</idno>
<idno type="wicri:Area/Main/Repository">001219</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-4596</idno>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption band</term>
<term>Absorption edge</term>
<term>Absorption spectra</term>
<term>Anatase</term>
<term>Catalyst activity</term>
<term>Chromium</term>
<term>Comparative study</term>
<term>Copper</term>
<term>Doping</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Impurity effect</term>
<term>Indium additions</term>
<term>Iron</term>
<term>Metal addition</term>
<term>Nanocrystal</term>
<term>Nanostructures</term>
<term>Optical absorption</term>
<term>Optical properties</term>
<term>Photocatalysis</term>
<term>Radiation effects</term>
<term>Red shift</term>
<term>Scanning electron microscopy</term>
<term>Spectral line shift</term>
<term>Titanium oxide</term>
<term>Transition element additions</term>
<term>Transition elements</term>
<term>Ultraviolet spectra</term>
<term>Ultraviolet visible spectrum</term>
<term>X-ray microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude comparative</term>
<term>Propriété optique</term>
<term>Spectre absorption</term>
<term>Photocatalyse</term>
<term>Nanostructure</term>
<term>Nanocristal</term>
<term>Anatase</term>
<term>Addition métal transition</term>
<term>Dopage</term>
<term>Métal transition</term>
<term>Absorption optique</term>
<term>Addition métal</term>
<term>Microscopie RX</term>
<term>Diffraction RX</term>
<term>Oxyde de titane</term>
<term>Cuivre</term>
<term>Fer</term>
<term>Chrome</term>
<term>Microscopie électronique balayage</term>
<term>Spectre UV visible</term>
<term>Déplacement raie</term>
<term>Déplacement vers le rouge</term>
<term>Limite absorption</term>
<term>Bande absorption</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Activité catalytique</term>
<term>Addition indium</term>
<term>Effet impureté</term>
<term>Spectre UV</term>
<term>Effet rayonnement</term>
<term>TiO2</term>
<term>7820</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Cuivre</term>
<term>Fer</term>
<term>Chrome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of nanocrystalline Ti0
<sub>2</sub>
doping with transition metal cations (Cu
<sup>2+</sup>
, Fe
<sup>3+</sup>
, Co
<sup>2+</sup>
, Cr
<sup>3+</sup>
) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO
<sub>2</sub>
samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: A < A/Co < A/Cu < A/Fe. On the contrary, photocatalytic activity of rutile samples decreases upon doping in the series R > R/Co > R/Cu > R/Fe > R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>198</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO
<sub>2</sub>
doped with transition metal cations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KERNAZHITSKY (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHYMANOVSKA (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GAVRILKO (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NAUMOV (V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KSHNYAKIN (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KHALYAVKA (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Photoactiviry, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46</s1>
<s2>Kiev 03650</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Sumy State University, Rymsky-Korsakov Str. 2</s1>
<s2>Sumy 40007</s2>
<s3>UKR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory of Photochemistry of Disperse Materials, Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, Gen. Naumov Str. 13</s1>
<s2>Kiev 03164</s2>
<s3>UKR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>511-519</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000503720600720</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>63 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0133841</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of nanocrystalline Ti0
<sub>2</sub>
doping with transition metal cations (Cu
<sup>2+</sup>
, Fe
<sup>3+</sup>
, Co
<sup>2+</sup>
, Cr
<sup>3+</sup>
) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO
<sub>2</sub>
samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: A < A/Co < A/Cu < A/Fe. On the contrary, photocatalytic activity of rutile samples decreases upon doping in the series R > R/Co > R/Cu > R/Fe > R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Addition métal transition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Transition element additions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Absorption optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Absorción óptica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Addition métal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Metal addition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Adición metal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Microscopie RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>X-ray microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>XRD</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Chrome</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Chromium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Spectre UV visible</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Ultraviolet visible spectrum</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Espectro UV visible</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Red shift</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Bande absorption</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Absorption band</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Banda absorción</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Activité catalytique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Catalyst activity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Actividad catalítica</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Effet impureté</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Impurity effect</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Efecto impureza</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Spectre UV</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Ultraviolet spectra</s0>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>41</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0133841
   |texte=   A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024